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ABSTRACT 
Reservoir properties, such as porosity, composition, and pore shape of gas shales are important 
for both exploration and production purposes of these complex reservoir rocks. This work 
presents a workflow to invert these properties from well log sonic data for unconventional gas 
shales, using the Haynesville Shale as a case study. Two rock physics models, an isotropic and 
an anisotropic one, were combined with a grid search method. The isotropic model initiates the 
numerical simulation by including grains and pores of different shapes and sizes; the anisotropic 
model then treats the shale as a vertical transversely isotropic medium by introducing aligned 
fractures. After the relationships between the reservoir properties and elastic properties (P- and 
S- wave velocities) were built through the rock physics models, a grid search method was used to 
estimate the reservoir properties and the associated uncertainties. In the grid searching, P- and S- 
wave velocities from the rock physics models were compared with the measured log data. The 
modeled seismic velocities that satisfied specific acceptance criteria provided the estimated 
reservoir properties. The workflow was applied to the Haynesville Shale and provided joint 
distributions of porosity, composition and pore aspect ratio at the well location. The porosity and 
composition estimations matched the observations from log and core data within a few percent. 
Aspect ratio estimation matched those observed in microscale images. When we apply this 
workflow to the seismic scale where there are continuous seismic velocities inverted from 3D 
seismic data, we will be able to obtain spatial distributions of these reservoir properties and, 
therefore, provide optimal locations for exploration and production wells.  

 
INTRODUCTION 
 

Estimation of reservoir properties, such as porosity, composition, and pore shape of gas 
shales and other unconventional hydrocarbon systems are important for both exploration and 
production. Understanding these reservoir properties contributes to identifying zones of 
economic production and possibly optimal zones for hydraulic fracturing. Porosity estimation 
helps to determine gas capacity and the estimated ultimate recovery (EUR); composition 
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contributes to understand shale brittleness, and pore aspect ratio provides additional information 
to determine the stiffness of the shale.  

To understand reservoir properties of shales, rock physics models are very important. Rock 
physics models describe the relationships between reservoir properties and the elastic properties, 
calibrated by well log data and core data at well locations. The specific rock physics model to be 
used depends on the rock type and complexity of the rock. The complexity we consider 
important for gas shales are the relationships among lithology, porosity, fluid, pore shape, 
pressure and anisotropy. Although numerous contact-theory models (Dvorkin and Nur, 1996; 
Gal et al., 1998; Avseth et al., 2000), empirical rock-physics relationships (Tosaya and Nur, 
1982; Castagna et al., 1985) and inclusion-based models (Kuster and Toksoz, 1974; O’Connell 
and Budiansky, 1974) exist, few of them are capable of modeling complex shales in terms of 
pore and grain shapes, composition, and anisotropy. The Haynesville Shale tends to have 
flattened or elongated grains and pores (Curtis et al., 2010). These flattened or elongated grains 
and pores significantly reduce the velocities of the shale, because the shape is compliant, which 
reduces the rock moduli, depending on the orientation of pores relative to wave propagation 
and/or polarization directions. In addition, shales are typically anisotropic due to either intrinsic 
alignment of clay platelets or alignment of pores, cracks or fractures. Therefore, to model and 
understand gas shales, we must utilize more complicated models.  

Unlike conventional clastic reservoirs, for which there are numerous studies estimating 
distributions of porosity, clay content, water saturation, lithology facies and fluid types from 
seismic data (e.g., Mukerji et al., 2001; Eidsvik et al., 2004; Bachrach, 2006; Spikes et al., 2007; 
Grana and Della Rossa, 2010; Rimstad et al., 2012), characterizing reservoir properties of gas 
shales is still a young and very active area of research. Vanorio et al. (2008) used vitrinite 
reflectance data to generate relationships between maturity and Thomsen’s (1986) anisotropic 
parameter ε to understand how maturation processes cause anisotropy changes. Delle Piane et al. 
(2011) investigated the intrinsic and crack-induced anisotropy of brine-saturated shale samples 
under different external stresses. They found that elastic anisotropy of these samples depended 
on the composition and spatial distributions of different minerals and microfractures, and the 
change of anisotropy depended on the applied stresses, their orientations and the degree of stress 
anisotropy. Nadri et al. (2012) presented an approach to estimate the anisotropy parameters of 
transversely isotropic shales of arbitrary geometry. They successfully applied this approach on 
ultrasonic P-wave velocity data from a spherical shale sample and a cylindrical shale sample. 
Those studies were based on laboratory measurements of shale samples. There were also studies 
modeling elastic properties of shales. Dræge et al. (2006) combined the self-consistent model 
and a differential effective medium model with a shale compaction theory to model the effective 
elastic stiffness of shales as a function of depth, as well as estimating the effect of cementation 
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on the effective elastic stiffness of shales. Their modeled results were consistent with the vertical 
P- and S-wave velocities from three wells. Avseth et al. (2008) used rock physics and AVO 
depth trend modeling to understand the physical properties (intrinsic anisotropy, smectite-to-illite 
transition, AVO attributes) of mechanically compacted shales as function of burial depth, and 
therefore improved characterization on sandstone reservoirs embedded in shales. Ciz and Shapiro 
(2009) were able to explain the compliance tensor, anellipticity, and three anisotropic parameters 
under different stresses for transversely isotropic shales through a porosity-deformation approach 
and its anisotropic extension. Pervukhina et al. (2011) described the five stress-dependent elastic 
coefficients of transversely isotropic shales using a model that treated the orientation of clay 
platelets and compliance ratio of the platelet contacts as inputs. Their model was able to predict 
simultaneously the stress dependency of all five elastic compliances. Recently, Jiang and Spikes 
(2012) used the self-consistent model and a grid search method to estimate porosity and pore 
shape distributions for the Haynesville Shale. In that study, only P-impedance was included to 
estimate either porosity or pore shape under isotropic condition, and anisotropy was not 
considered.  

This study provides a comprehensive understanding of the porosity, composition, and pore 
shape distributions of the Haynesville Shale constrained by both P- and S-wave velocities 
through a combination of rock physics models and grid searching. The rock physics models used 
here combined an isotropic effective medium model (the self-consistent model, O’Connell and 
Budiansky, 1974; Berryman, 1980) and an anisotropic effective medium model (Chapman, 
2003). The self-consistent model provided a porous rock matrix with multiple mineral phases 
and pores with different aspect ratios. The anisotropic effective medium model based on 
Chapman (2003) provided frequency- and pore-pressure-dependent anisotropy. Relationships 
between reservoir properties and elastic properties were obtained by correlating input rock 
property distributions and combining these two models. Based on these relationships, the grid 
search provided distributions of porosity, composition, and pore shapes by considering all the 
possible modeled solutions without bias.  
 
STUDY AREA AND DATA 

 
The Haynesville Shale, located at the boundary of Texas and Louisiana, is in the Sabine 

Uplift and west of the North Louisiana Salt Basin. The depositional environment is interpreted as 
a deep and partly euxinic and anoxic restricted basin that was surrounded by carbonate platforms 
and siliciclastic shelves during the upper Jurassic (Hammes et al., 2011). It lies stratigraphically 
above the Smackover limestone formation and beneath the Cotton Valley Group. Reservoir 
depth varies from 3000–4700 m. The major mineralogic components are clay, quartz and calcite, 
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and the gas capacity is estimated at more than 100 tcf (Hammes et al., 2011). The permeability is 
extremely low (less than 0.001 mD on average), and the porosity varies from about 3% to 14% 
(Wang and Hammes, 2010). The Haynesville Shale has been shown to exhibit vertical transverse 
isotropy (VTI) (Horne et al., 2012).  

Data from two vertical wells, one inside and one outside a seismic survey area, were used in 
this study. These two wells (Well A and Well B) are approximately 3 km away from each other. 
Well A is inside the seismic survey area, but Well B is out of the survey area. Gamma ray, 
caliper, density, P- and S-wave velocity (VP and VS), and P-impedance are plotted (Well A in 
Figure 1 and Well B in Figure 2). The Haynesville Shale (gray shaded zone) was identified based 
on the increase of gamma ray log (Well A) and decrease of the density log (Well B). Above the 
Haynesville Shale is the Bossier Shale, and the Smackover Limestone is below the Haynesville 
Shale. Overall, VP and VS in each well are very well correlated, and they are inversely correlated 
with the gamma ray log. The logs from these two wells show very similar features except that 
Well B has better data quality than Well A whose borehole environment is rugose as indicated by 
the caliper log. The density, VP and VS logs in Well A have many fluctuations that diminish their 
reliability. Therefore, we focused on the log data from Well B when inverting reservoir 
properties from elastic properties. In Well B, within the Haynesville Shale formation, density 
varies from 2.43 to 2.67 g/cm3 with an average of 2.53 g/cm3. The VP varies from 2.93 to 4.07 
km/s, with an average of 3.26 g/cm3; the VS varies from 1.68 to 2.47 km/s, with an average of 
1.94 km/s.  
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Figure 1. Well log data and seismic data from Well A. Gamma ray, caliper, density, P- and S-wave 

velocities (VP and VS), and P-impedance are plotted. Depth is artificial. The Haynesville Shale is 
marked as the gray shaded zone. It is identified based on the increase of gamma ray log. On the 
right seismic data at Well A is plotted. Overall, VP and VS are very well correlated, and they are 
inversely correlated with the gamma ray log. The caliper log has many fluctuations, indicating a 
rugose borehole environment that causes fluctuations in the density and velocity logs. The blue 
seismograms are five duplicates of the synthetic seismic data, and red seismograms are five 
duplicates of the observed seismic data at the well location. Seismic data were tied to the well log 
data with a correlation coefficient of 0.79. The seismic data indicate large reflectivity at the 
bottom of the Haynesville Shale, whereas the top of Haynesville Shale is not as clearly 
identifiable as the bottom.   
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Figure 2. Well log data from Well B. Gamma ray, caliper, density, P- and S-wave velocities (VP and 

VS), and P-impedance are plotted. Depth is artificial. The Haynesville Shale is marked as the 
gray shaded zone, identified by the decrease of density due to high kerogen content. Well B has 
better data quality than Well A. Overall, VP and VS are very well correlated, and they are 
inversely correlated with the gamma ray log. On the right, synthetic seismic data from Well B is 
plotted, generated by the same wavelet from Well A. Both have five duplicates. Because these 
two wells are close to each other (less than 3 km), their synthetic seismograms are similar.   

 
For both wells, synthetic seismograms generated from the impedance logs are plotted with 

the log data. In Well A (Figure 1), the observed seismic data (red seismograms) were tied with 
the log data by using time-to-depth information generated by VSP travel times from an adjacent 
well, which was not included in this work. The observed seismic data and synthetic seismic data 
are very similar with a correlation coefficient of 0.79. Because there is no observed seismic data 
for Well B, its synthetic seismograms were compared with the synthetic ones from Well A. The 
same wavelet (extracted from observed seismic data at Well A) were used for both Well A and 
Well B. Because the impedance log of Well A fluctuates due to the rugose borehole 
environment, the synthetic seismogram for Well A appears to have higher frequency than the one 
from Well B. The seismic data indicates large reflectivity difference between the Haynesville 
Shale and the underlying Smackover Limestone due to the large increase of VP and density. 
However, the boundary between the Hayesville Shale and Bossier Shale is not as clearly defined 
as the one between the Haynesville Shale and Smackover Limestone.  

In addition to log and seismic data, core data were available for Well A. Forty-eight samples 
within the Bossier and Haynesville Shale formations were measured at about a 3-m interval. 
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Among these 48 samples, 20 were for Bossier and 28 were for Haynesville Shale. X-Ray 
diffraction (XRD) and density analysis provided composition information. Both the Bossier and 
Haynesville Shale contain quartz, feldspar, plagioclase, calcite, dolomite, pyrite, kerogen and 
clay (Figure 3). There is a clear boundary between the Bossier and Haynesville Shale due to the 
composition change. From the Bossier to the Haynesville, the average quartz percentage 
increases from 28.9% to 31.7%, average calcite percentage increases from 4.8% to 14.2%, 
average kerogen percentage increases from 1.2% to 5.2%, and average clay percentage decreases 
from 56.1% to 35.6%. In general, the Haynesville Shale is richer in organic matter but contains 
less clay than the Bossier Shale.  

 

 
Figure 3. Mineralogic composition of the Bossier and Haynesville Shale from XRD and density 

analysis for Well A. The depth scale is not linear because the 48 samples were not measured at 
exactly equal spacing along depth. There is a clear boundary between Bossier and Haynesville 
Shale due to the increase of quartz, calcite and kerogen and the decrease of clay. 

 
Because XRD and density analysis was done at every 3 m, whereas log data was measured at 

a 0.15-m interval, we interpolated the 28 samples within the Haynesville Shale formation and 
then calculated the density porosity as a function of depth based on density log (Equation 1). In 
Equation 1, ϕ is porosity, ρm is the density of the rock matrix, derived from interpolated XRD 
results, ρb is the measured density, and ρfl is density of the pore fluid.  

 

φ =
ρm − ρb
ρm − ρ fl

          (1) 
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To simplify the modeling to an extent, we included only quartz, calcite, pyrite, kerogen and 
clay in the rock physics models. We transferred the percentages of feldspar, plagioclase and 
dolomite from the XRD and density analysis to calcite. Then the average percentages of quartz, 
calcite, pyrite, kerogen, and clay are 31.59%, 25.79%, 1.96%, 5.28%, and 35.38% for Well A, 
respectively. Fluid density was calculated from a brine and gas mixture with an average water 
saturation of approximately 25% based on the resistivity log.  
 
METHOD 

 
A combination of rock physics modeling and grid searching was applied to simultaneously 

estimate the distributions of porosity, composition and pore shape for the Haynesville Shale. 
Rock physics modeling provided relationships between the reservoir properties and elastic 
properties, calibrated to P- and S-wave measurements. The grid searching provided probabilistic 
estimates of reservoir properties conditioned by the relationships between reservoir properties 
and elastic properties.  

The Haynesville Shale is vertically transversely isotropic (VTI) (Horne et al., 2012), 
although the degree of anisotropy at the well log scale is not known exactly. Elastic properties of 
VTI media have a vertical axis of symmetry, generalized as a stack of horizontal layers. Five 
independent stiffness tensor components in the Voigt notation define VTI media (Thomsen, 
1986): C11, C33, C44, C66, and C13. Velocities propagating along and perpendicular to the axis of 
symmetry, and at angles in between, depend on these five components and the bulk density. We 
used Chapman’s (2003) model to calculate the five components based on the rock matrix built 
from the self-consistent model. Chapman’s model is an effective medium model that imposes 
anisotropy from aligned fractures. Compared to other transversely isotropic models (Hornby et 
al., 1994; Dræge et al., 2006; Ciz and Shapiro, 2009; Kuila et al., 2011; Pervukhina et al., 2011; 
Nadri et al., 2012), Chapman’s model considers frequency and pore pressure effects.   

Chapman’s model (Chapman, 2001; Chapman et al., 2002; Chapman, 2003) was introduced 
to account for squirt flow in the computation of effective moduli of either isotropic or anisotropic 
rocks. Squirt flow is the fluid interaction caused by the pressure gradient at micro-scale during 
wave propagation when the wavelength is smaller than the pore size (Dvorkin and Nur, 1993; 
Dvorkin et al., 1994). The localized fluid flow usually follows directions different from the 
direction of wave propagation. In Chapman’s model, the rock contains spherical pores, randomly 
aligned non-spherical cracks, and aligned fractures. The modeled anisotropy results from the 
aligned fractures. The sizes of spherical pores, non-spherical cracks, and fractures affect the 
characteristic frequency of the squirt flow, attenuation and velocity dispersion. Non-spherical 
cracks and fractures both have idealized ellipsoidal shapes, and their aspect ratios are defined as 
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the ratios between the smallest axis and largest axis. The five stiffness components are calculated 
from Equation A1–A5. The velocities perpendicular to the fractures were calculated from 
Equation 2 (Thomsen, 1986).  

 

VP = C 33
ρ

VS = C 44

ρ
                                       (2) 

 
As an extension of his earlier work (Chapman, 2003), Chapman (2009) developed a 

technique to include two fracture sets with different scale lengths and orientations. Because the 
Haynesville Shale was treated as a VTI medium with only one axis of symmetry, we 
implemented the model from Chapman (2003) in this study. Some limitations apply when using 
this model on the Haynesville Shale. For example, the model assumes that the anisotropy only 
comes from aligned fractures, whereas aligned clay minerals likely contribute to the VTI 
anisotropy. Also, Chapman’s model contains only one solid phase, and it assumes the pores are 
spherical, whereas the Haynesville Shale contains multiple minerals phases; and its pores are 
primarily non-spherical based on microstructure images (Curtis et al., 2010).  

To solve these issues, we combined Chapman’s model with an additional rock physics model 
to a build porous rock matrix that included multiple mineral phases and non-spherical pores. The 
additional model was the self-consistent model (O’Connell and Budiansky, 1974; Berryman, 
1980), which is not limited to specific compositions, and is able to incorporate multiple 
mineralogical and pore phases, as well as their shapes and spatial distributions. The self-
consistent model provides the effective moduli for the porous rock matrix consisting of quartz, 
calcite, pyrite, kerogen, clay and non-spherical pores. The general form of the self-consistent 
approximation is shown in Equation 3 (Mavko et al., 2009). This pair of equations must be 
solved iteratively in order to find the yet-to-be determined values of KSC and µSC as a function of 
the volumetric quantities and elastic moduli of the constituents. 

 

                               1

1

( ) 0

( ) 0

N

i i sc i
i
N

i i sc i
i

f K K U

f Vµ µ

=

=

− =

− =

∑

∑
             (3)    
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In these equations, fi is the fraction of each phase in the rock, Ki and µi are the bulk and shear 
moduli of each phase, KSC and µSC are the effective moduli to be determined, and Ui and Vi are 
geometric factors based on moduli of each phase and their aspect ratios. 

The combination of Chapman’s model and the self-consistent model (Figure 4) provided 
relationships between elastic and reservoir properties for the Haynesville Shale. After that, a grid 
search method (Sen and Stoffa, 1995) was used to invert the reservoir properties from the elastic 
properties. The solutions of the reservoir properties were obtained by systematically searching 
through each point in the model space composed of elastic properties. Specifically, the model 
space contained a large number of points on a uniform grid. At each point, the objective 
functions (Equation 4) were evaluated. In the equation, VPmodel and VSmodel are the P- and S-wave 
velocities from the rock physics modeling, and VPobserved and VSobserved are the observed P- and S-
wave velocities. The velocity values that provided the minima of the objective functions 
corresponded to the best solutions of the reservoir properties. In this work, we obtained the best 
solutions and probability distributions at each depth point. The advantage of the grid search 
method is that the range of values for the model space can be specified, and all the possible 
solutions are equally considered without any bias. The disadvantage of the grid search method is 
that it can be time consuming and computationally expensive, depending on the number of points 
in the model space. The computational cost increases exponentially each time one more property 
is added (LaValle et al., 2004). In addition, the range of values for the model space should be 
carefully selected in order to include all physically reasonable possibilities. 

 
Obj _ P =|VPmodel −VPobserved |
Obj _ S =|VSmodel −VSobserved |

             (4) 

 
 

In this study, VP and VS form the model space, and they are used to estimate jointly three 
reservoir properties (pore aspect ratio, porosity, and composition). There are two knowns but 
three unknowns, so the problem is underdetermined. Therefore, correlations among the prior 
distributions of these three reservoir properties were introduced when generating VP and VS from 
the rock physics models. Those correlations are described in the next section.  
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Figure 4. The model assumes a mineral matrix generated by the self-consistent model that contains 

multiple mineral phases and non-spherical pores with different aspect ratios. In the model, there 
are distributions of pore shapes from the self-consistent model, and randomly distributed round 
pores, randomly distributed and oriented microcracks, and aligned fractures from Chapman’s 
model. Cracks and fractures have the same aspect ratio as the non-spherical pores in the self-
consistent model, and cracks and fractures have a defined density. Anisotropy comes from the 
aligned fractures in Chapman’s model. Squirt flow was considered in the computation of the five 
stiffness tensor components for the anisotropic medium in Chapman’s model. 

 
WORKFLOW 

 
The combination of the self-consistent model and Chapman’s model provided elastic 

properties (VP and VS) given the prior distributions of the reservoir properties (composition, 
porosity, and pore shape). The prior distributions of these reservoir properties were assumed to 
contain all possible cases within the defined range. Each combination of reservoir properties 
corresponded to one set of modeled VP and VS. Grid searching inverted the combination of 
reservoir properties by comparing model VP and VS to the observed VP and VS. 

In the workflow, we first assumed the prior composition distribution that contained 400 
mineral assemblages with different percentages of quartz, calcite, pyrite, kerogen, and clay 
(Figure 5a). This number (400) is enough to maintain high accuracy but low computational cost. 
In each case, percentages of quartz, calcite, kerogen and clay were varied. Pyrite was fixed as 
2%. From the composition assemblages 1 to 400, percentages for quartz and calcite decreased, 
and percentages for kerogen and clay increased, so the stiffness of the rock matrix decreased as 
the case number increases. Because the self-consistent model requires aspect ratios for both 
mineral and pore phases, we assumed the aspect ratios were 1 for stiff quartz, calcite and pyrite, 
0.1 for soft clay, and 0.01 for soft kerogen.  
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a)      b) 

 
c) 

 
Figure 5. a) The 400 prior composition assemblages used in the modeling. In each case, percentages 

of quartz, calcite, kerogen and clay were changed. The percentage of pyrite was fixed as 2%. b) 
The prior aspect ratio distribution based on both prior composition and porosity distribution. To 
solve three unknowns based on two knowns, the prior aspect ratio was correlated with the prior 
composition and prior SCM porosity. The aspect ratio was positively linearly related to rock 
matrix stiffness and negatively linearly related to SCM porosity. The aspect ratio decreases from 
0.12 for the smallest SCM porosity and stiffest rock matrix to nearly 0 for the largest SCM 
porosity and the softest rock matrix. c) The total prior porosity distribution. It contains porosity 
for SCM and Chapman’s model. The porosity from Chapman’s model varies with aspect ratio. 
Therefore, the prior total porosity distribution is not a simple uniform distribution between 0 
and 0.4.  

 
The total porosity in the workflow was defined as a function of four different porosity types. 

Those four included the non-spherical pore porosity in self-consistent model (SCM porosity) and 
spherical pores, cracks, and fractures in the Chapman’s model. The SCM porosity is introduced 
first. Prior SCM porosity was uniformly distributed between 0 and 0.4, with an increment of 
0.01. This large porosity range assures that all the likely porosity values were included in the 
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model. Because there are three properties to be inverted from two known variables (VP and VS), 
we linearly correlated the prior aspect ratio with the prior composition and prior SCM porosity 
(Figure 5b). The aspect ratio was positively related to the rock matrix stiffness and negatively 
related to the SCM porosity. As the clay percentage increased, the pore aspect ratio decreased; as 
SCM porosity increased, the pore aspect ratio decreased. The aspect ratio decreases from 0.12 
for the stiffest rock matrix with smallest SCM porosity to nearly 0 for softest rock matrix with 
largest SCM porosity. Based on the prior distributions of composition, SCM porosity and pore 
aspect ratio, a porous rock matrix was generated from the self-consistent model.  

In Chapman’s model, we assumed that the frequency was 10 kHz, near the frequency of the 
log data. Because pores in Haynesville Shale are unlikely to be spherical, the contribution from 
round pores ϕrp was set to be 0.1%. Crack density εc was assumed to be 0.01, and fracture density 
εf was assumed as 0.04. Correspondingly, crack and fracture porosities (Equation 5) were 
calculated from crack and fracture densities. The total porosity depended on the porosities from 
both the self-consistent model and Chapman’s model. It (ϕtotal) was calculated from the solid 
fraction in the self-consistent model (1-ϕscm) and solid fraction in Chapman’s model (1-ϕchap) 
using Equation 6. This total porosity was correlated with the prior composition and the prior 
SCM porosity (Figure 5c). In the model, squirt flow was considered from the porosities in 
Chapman’s model, and the SCM porosities do not contribute to squirt flow. 

 

φc =
4πα
3

εc

φ f =
4πα
3

ε f

                      (5) 

 
φ total =1− (1−φ scm)× (1−φchap)
φchap = φ rp+φc+φ f                               (6) 

 
From the combination of the self-consistent model and Chapman’s model, we obtained 

modeled VP and VS values for each set of composition, porosity, and aspect ratio. The modeled 
VP and VS were compared with observed VP and VS from the log data (Equation 4). If the 
differences between the modeled and observed VP and VS were less than 0.08 km/s (~2% error 
for VP and ~4% error for VS), then the corresponding set of reservoir properties (pore aspect 
ratio, porosity, and composition) were accepted. In this work, we not only obtained the best 
solutions, but also probability distributions of multiple solutions. The procedure was repeated at 
each depth in the log data to obtain independent distributions of porosity, composition and pore 
aspect ratio.   
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ELASTIC PROPERTIES OF CLAY, KEROGEN AND FLUID  

 
The shale model we built contained quartz, calcite, pyrite, kerogen, clay, and 

pores/cracks/fractures with brine and gas saturation. Elastic properties for quartz, calcite and 
pyrite are very well known, and they have small uncertainties. However, the properties for clay, 
fluid, and kerogen are ambiguous and have large uncertainties. We investigated how different 
clay and fluid property values affected the modeling results. 

It is difficult to measure the elastic properties of clay because clay mineral grains are very 
small, and they tend to have chemical reactions with organic polar molecules (Theng, 1974; 
Wang et al., 2001; Vanorio et al., 2003; Moyano et al., 2012). Different types of clay, such as 
smectite, chlorite and kaolinite, have different bulk and shear moduli and densities due to 
different mineralogy, structure, and ability to hold clay-bound water. For example, smectite 
absorbs much more water in volume than illite (Whitney, 1990; Saffer and Marone, 2003), and it 
has much lower bulk and shear modulus than illite and other clays as a result (Wang et al., 2001). 
From extrapolation of empirical dependences to pure clay, Castagna et al. (1985), Tosaya and 
Nur (1982) and Han et al. (1986) obtained similar elastic properties with each other. Wang et al. 
(2001) obtained much higher bulk and shear moduli through measurements on clay epoxy 
artificial samples. Vanorio et al. (2003) obtained very low bulk and shear moduli of clay as 
functions of pressure and saturation through independent experimental methods. By using a 
generalized singular approximation method of effective media theory, Bayuk et al. (2007) were 
able to invert a stiffness tensor of clay and obtain its anisotropy parameters. Overall, the elastic 
properties of various clay minerals have large uncertainties, with the bulk modulus variations 
from less than 10 GPa to greater than 60 GPa.  

To investigate the effects of varying clay properties on the modeling, we tested the bulk 
modulus of clay from 10 GPa to 60 GPa. The shear modulus of clay was set as 0.47 times the 
bulk modulus based on Wang et al. (2001). Clay density varied from 2.4 g/cm3 to 2.7 g/cm3, and 
porosity was assumed to be 5%, which is about the average value in the Haynesville Shale. The 
effective VP, VS and VP/VS ratio from the combined self-consistent model and Chapman’s model 
are shown in Figure 6. From the softest clay to stiffest clay, both VP and VS increase about 30%, 
and VP/VS ratio decreases about 2.2%. This suggests that the effect of clay on velocities is not 
negligible. Because clay minerals typically absorb water, which makes in situ clay composites 
softer than pure clay minerals (Wang et al., 2001; Vanorio et al., 2003), we used the relatively 
soft clay properties from classic gulf type clays (Tosaya, 1982; Han et al., 1986; Blangy, 1992), 
with bulk modulus of 21 GPa, shear modulus of 7 GPa, and density as 2.58 g/cm3 (Table 1).  
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a)       b) 

 
Figure 6. Investigation of how VP, VS, and VP/VS vary with different clay elastic moduli and densities, 

due to large uncertainties on elastic properties of clay. a) VP (solid) and VS (dashed) increase 
about 30% from the softest clay to stiffest clay; b) VP/VS ratio decreases about 2.2% from the 
softest clay to stiffest clay.  
 

Table 1. Moduli and densities of the solids and pore used in the modeling. 
 Density (g/cm3) Bulk Modulus (GPa) Shear Modulus (GPa) 

Brine  1.09 2.8 N/A 
Gas 0.16 0.07 N/A 

Quartz  2.65 36.6 45 
Clay[4, 5] 2.58 21 7 
Calcite 2.71 69 33 

Kerogen[1,2,3] 1.45  2.9 2.7 
Pyrite 4.93 147.4 132.5 

    
[1] Blangy (1992); [2] Carmichael (1989); [3] Eastwood and Hammes (2011); [4] Han et al. (1986); [5] 

Tosaya (1982) 
 

Due to its undefined structure and mineralogy, kerogen also has large uncertainties for its 
moduli and density. Based on vitrinite reflectance, a measurement of the maturity of the organic 
material, Eastwood and Hammes (2011) obtained the kerogen density as 1.45 g/cm3 for the 
Haynesville Shale. The bulk and shear moduli (2.9 GPa and 2.7 Gpa) of kerogen we used were 
from Carmichael (1989) and Blangy (1992) (Table 1).  

As for the fluid, we used Brie’s fluid mixing equation (Equation 7, Brie et al., 1995) to 
calculate the effective fluid moduli of a brine and gas mixture. In the equation, the effective bulk 
modulus depends on the bulk moduli of brine (Kb) and gas (Kg), the gas saturation (Sg) and an 
empirical exponent (e). Bulk moduli of brine and gas are in Table 1, and the gas saturation is 
from the average water saturation (~25%) in the Haynesville Shale. The empirical exponent e 
varies from 1 for patchy saturation to 3.4 for uniformly saturation. Here the patchy saturation 
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provides the upper bound of effective bulk modulus of the mixed fluids, and uniform saturation 
provides lower bound of effective bulk modulus of the mixed fluids.  

 
Kfluid = (Kb− Kg)(1− Sg)e + Kg                           (7) 

 
In Brie’s fluid mixing equation, different exponents correspond to different fluid properties. 

We investigated how different exponents in the equation affect the model results (Figure 7). Two 
cases are shown. One is uniform saturation with e=3.4 (Figure 7a), and another one is very close 
to patchy saturation with e=1.17 (Figure 7b). In the crossplot of VS versus VP, the gray dots are 
log data from well B, and the background shows the modeling result colored by prior total 
porosity. The positions and colors that the data points fall into provide the porosity estimation. 
The models with different exponent values have different shape and color patterns, indicating 
they provide slightly different porosity estimations. In Figure 7a, the data points are mostly in the 
dark blue area, suggesting that porosity estimations are mostly close to 0; in Figure 7b, the data 
points are mostly in the blue and cyran areas, suggesting that porosity estimations are mostly 
around 5%, which is about the average porosity value of the Haynesville Shale. Therefore, for 
the Haynesville Shale, 1.17 is a suitable value to be used for the exponent e in Brie’s fluid 
mixing equation. 

 
a)       b) 

 
Figure 7. The effect of fluid mixing using different exponent values in Brie’s fluid mixing equation 

(Equation 7). a) Exponent value e=3.4. In the crossplot of VS versus VP, gray dots are data from 
Well B, and background color shows the modeling result colored by prior total porosity. b) 
Exponent value e=1.17. Gray dots are data from Well B, and background color shows the 
modeling result colored by prior porosity. In this case, the data points correspond to a more 
accurate porosity range than in a) based on porosity from the well. 
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RESULTS 
 
The modeling results are shown in Figure 8. The crossplots of VP versus porosity (Figure 8a) 

and VS versus porosity (Figure 8b) colored by prior composition demonstrate how VP and VS 
vary with prior porosity and prior composition. In both plots, gray points are observed data from 
Well B. When the composition varies from clay- and kerogen-rich (cold colors) to quartz- and 
calcite-rich (hot colors), VP and VS increases because the bulk moduli of quartz and calcite are 
larger than those of clay and kerogen. These two figures show that both VP and VS are modeled 
accurately by the combination of self-consistent model and Chapman’s model. To determine if 
the model works for both VP and VS simultaneously, we generated a crossplot of VS versus VP, 
with modeling results colored by both prior distributions of porosity (Figure 7b) and composition 
(Figure 8c). In both figures, the variations of modeled VP and VS depend on the combined effects 
of porosity, composition and aspect ratio. Although it appears that VS increases with porosity 
(Figure 7b), it is actually the increase of rock stiffness (Figure 8c) that causes the increase of VS. 
Both figures (Figure 7b and 8c) show that most of the data points fall within the model, and the 
model followed the trends of data very well. This suggests that Chapman’s model worked well 
for both VP and VS simultaneously, given the prior distributions of porosity, composition, and 
pore aspect ratio. Therefore, by combining modeled VP and VS results, we were able to estimate 
porosity, composition and pore aspect ratio distributions simultaneously.  

 
a)       b) 
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c) 

 
Figure 8. a) Crossplot of VP versus porosity. Gray points are data from Well B. Background color 

shows the modeling result with the prior composition distribution. b) Crossplot of VS versus 
porosity. Gray points are data from Well B. Background color shows the modeling result with 
the prior composition distribution. c) Crossplot of VS versus VP, colored by prior composition 
distribution. Almost all the data points were covered by the modeling results, and the modeling 
results followed the data trend very well. The data points that were missed by the model likely 
correspond to dolomite-rich composition excluded from the prior composition distribution.   

 
In the model (Figure 7b and 8c), the area that covers the majority of the data points has 

different colors, indicating there are variations in porosity, composition and aspect ratio. 
Meanwhile, although a few points fall in the blue area, they correspond to a small range of 
porosity and composition, and relatively large uncertainty of their estimations. There are also a 
few points that the model missed. One possible reason is that the prior distribution of 
composition did not account for some extreme cases with very high dolomite percentages. Using 
a different parameterization of the rock physics model based on rock-type classification might 
make the model work even better.  

Grid searching was used to estimate distributions of porosity, composition, and pore aspect 
ratio after rock physics modeling. The combination of the self-consistent model and Chapman’s 
model provided trends of VP and VS that explain the variations in the log data. By comparing 
modeled VP and VS with observed VP and VS, we simultaneously inverted porosity, composition, 
and aspect ratio. The criteria was to accept modeled VP and VS that have differences less than 
0.08 km/s (~2% error for VP and ~4% error for VS) comparing to the observed VP and VS. At 
each depth, multiple porosities, compositions and aspect ratios satisfy the criteria. We calculated 
the probability of each accepted value based on the number of accepted values and number of 
total values. In this way, we obtained not only just the best-fit reservoir properties, but also 
multiple fitted sets of reservoir properties with different probabilities.  
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The porosity estimation is shown in Figure 9. In Figure 9a, the background color shows the 
probability of the estimates, with the hot colors representing higher probability and cold colors 
representing lower probability. The black curve shows the porosity estimation with the highest 
probability, and the white curve is the density porosity from the log data. The porosity estimation 
fits the density porosity in terms of both value and the overall depth trend even though the 
inversion was performed independently at each depth location. The average estimated porosity is 
4.6%, and density porosity is about 4.2%. They both have standard deviation of about 0.02. The 
histograms of density porosity (Figure 9b, top) and the best fit porosity (Figure 9b, bottom) are 
very similar.  

 
a)       b) 

 
Figure 9. a) Porosity estimation. Background color represents probability, with the hot colors 

representing estimations with higher probability, and cold colors representing estimations with 
lower probability. The black curve marks the estimation with the highest probability, and the 
white curve shows the density porosity from log data. b) Histograms of observed and modeled 
porosity. Average estimated porosity is 4.6%, average density porosity is 4.2%, and both have 
standard deviation of about 0.02.  

 
The composition estimate is shown in Figure 10. The best-fit composition assemblage as a 

function of depth in the Haynesville Shale formation is shown in Figure 10a. The average 
percentages for quartz, calcite, pyrite, kerogen, and clay are shown in Table 2. These percentages 
are very close to the ones from XRD results in Well A (Table 2). They are not exactly the same 
because lithology from Well A and Well B may be slightly different. Certain depths, such as 
2360 m, 2406 m and 2413 m, display much higher percentages of quartz (~39%) and calcite 
(~31%), and much lower percentage of clay (~24%) than average within the Haynesville Shale. 
These features are consistent with the peaks in VP and VS logs (Figure 10b), and they likely 
correspond to more brittle zones.  
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a)       b) 

 
Figure 10. a) Composition assemblages along artificial depth. Each depth contains different 

percentages of quartz, calcite, pyrite, kerogen and clay. b) P- and S-wave velocities within the 
Haynesville Shale. A few peaks (marked by the blue line) of VP and VS at certain depths (~2360 m, 
~2406 m, and ~2413 m) correspond to more brittle zones with high quartz percentage (about 39%), 
high calcite percentage (about 31%) and low clay percentage (about 24%).  
 
Table 2. Comparison of compositions in percentage from modeling and XRD.  

 
Quartz (%) Calcite (%) Pyrite (%) Kerogen (%) Clay (%) 

From Model (Well B) 31.3 23.3 2 4.7 38.7 

From XRD (Well A) 31.6 25.8 2 5.3 35.4 

 
Figure 11 shows the pore aspect ratio estimate. In Figure 11a, the background color shows 

the probability, with hot colors representing higher probability and cold colors representing 
lower probability. The black curve marks the estimation with the highest probability. Figure 11b 
shows the histogram of the best aspect ratio estimation, which generally follows a normal 
distribution. The average value of the best estimated pore aspect ratio is about 0.04, with 
standard deviation of about 0.016. It is difficult to verify the pore aspect ratio estimation because 
there is no direct measurement of pore aspect ratio. However, by looking at microstructure 
images of core samples, we can obtain some idea of the pore/crack/fracture shapes and partially 
verify the aspect ratio estimation.  
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a)       b) 

 
Figure 11. a) Pore aspect ratio estimation. Hot colors represent estimates with higher probability, 

and cold colors are for lower probability. The black curve marks the estimation with the highest 
probability. b) Histogram of the estimated aspect ratio. It generally follows a normal 
distribution, with a mean of about 0.04 and standard deviation of about 0.016. 

 
The correlations among the estimated porosity, composition and aspect ratio are shown in 

Figure 12. These estimated properties are correlated in the same way as their prior distributions 
were correlated. As the clay percentage in estimated composition increases (composition # 
increases) and estimated porosity decreases (hot color to cold color), the estimated aspect ratio 
decreases. As clay percentage decreases (composition # decreases) and estimated porosity 
increases (cold color to hot color), the estimated aspect ratio increases. This is consistent with the 
fact that it is easier to compress soft clay than other stiffer minerals and therefore generate more 
flatten pores. Also, in the figure, the points with higher estimated clay percentages, lower 
estimated porosities and lower estimated aspect ratios are not as scattered as the ones with lower 
estimated clay percentages, higher estimated porosities and larger estimated aspect ratios. This 
means that uncertainties are relatively small for the locations with higher clay percentage, lower 
porosities and smaller aspect ratios.  
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Figure 12. Correlations among estimated porosity, composition and aspect ratio. These correlations 

are preserved from correlations among their prior distributions. As estimated clay percentage 
increases and estimated porosity decreases, the estimated aspect ratio decreases. The pattern of 
the scattered points indicates estimation uncertainties. The more scattered points correspond to 
lower estimated clay percentages, higher estimated porosities, and larger estimated aspect ratios. 
The more condensed points correspond to higher estimated clay percentages, lower estimated 
porosities, and smaller estimated aspect ratios.  

 
DISCUSSION 

 
In this study, we placed the fluid directly into the void spaces instead of using Gassmann’s 

fluid substitution to calculate bulk and shear moduli of the fluid-saturated rock from the dry rock 
frame. Gassmann’s fluid substitution equations are based on several assumptions (Gassmann, 
1951; Smith et al., 2003), including a homogeneous and isotropic rock matrix and low frequency 
so that the pore pressures are equilibrated throughout the pore space. The Haynesville Shale has 
extremely low permeability, and, therefore, the fluid mobility is very low. This suggests that the 
Haynesville Shale falls in the high-frequency regime, and the low-frequency assumption of 
Gassmann’s equation fails (Batzle et al., 2006). In addition, our inputs into Chapman’s model at 
about 10 kHz shows a small amount of dispersion, which also suggests that the velocity 
corresponds to high frequency behavior in which Gassmann’s equation is not valid. Therefore, 
we believe it is correct to directly place the fluid in the void space during the modeling.  

Reservoir properties (composition, porosity and pore shape) were estimated for the 
Haynesville Shale, along with the associated uncertainty. In addition to elastic properties of clay, 
kerogen, and fluid, there are also uncertainties in the log measurements or log calculations, such 
as porosity log calculation. Porosity cannot be directly measured at the log scale, so it is 
calculated from either the density log or neutron log. In this study, the porosity log was 
calculated from the density log. This calculation relied on the accuracy of density log 
measurement, which is very sensitive to the borehole environment. The calculation also relied on 
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the assumptions of fluid density and rock matrix density at each depth, which is sensitive to the 
composition assemblage and water saturation at each depth. In this study, composition is 
partially constrained by core measurements of Well A.   

This study focused on reservoir characterization at a single well location. The process can be 
expanded to the larger seismic scale by combining the modeling with 3D surface seismic data. 
Seismic inversion, calibrated properly, provides VP and VS for a 3D volume. Once those elastic 
properties at the large scale are input to our algorithm, we will be able to estimate the 3D 
distributions of the reservoir properties. One difficulty is the scaling issue when comparing 
seismic velocities from rock physics models and from seismic inversion. Log data are measured 
at sub-meter resolution and at frequency of tens of kHz, whereas seismic data is a time 
measurement with frequencies of tens of Hz. Upscaling is required from the log scale to seismic 
scale. The Backus (1962) average, a long wavelength effective medium approximation, can be 
used to help solve this issue.  

 
CONCLUSION 

 
In this study, we developed a workflow to characterize the reservoir properties of the 

unconventional gas shales, and the workflow worked successfully on the Haynesville Shale. We 
modeled both VP and VS simultaneously using a combination of the self-consistent model and 
Chapman’s model, and inverted porosity, composition and pore aspect ratio distributions from 
grid searching. The self-consistent model provided a porous rock matrix that contained different 
mineral phases and non-spherical pores as inputs in the Chapman’s model. Chapman’s model 
outputs anisotropic stiffnesses as function of frequency, porosity, fracture density, and lithology. 
The modeling was successful for Well B and provides relationships between the reservoir 
properties (porosity, composition, and pore aspect ratio) and elastic properties (VP and VS). The 
integration of the rock physics model with grid searching provided simultaneous estimates of 
porosity, composition and pore aspect ratio distributions for the Haynesville Shale. Estimation of 
porosity helps to determine gas capacity and the estimated ultimate recovery (EUR). Estimations 
of composition and pore aspect ratio help to understand the stiffness and brittleness of rock 
formations, which might contribute to locating sweet spots and identifying zones of economic 
production in unconventional reservoirs. Here, sweet spots are preferable locations at which to 
place hydraulic fractures in rock formations that contain more brittle compositions and with 
relatively high porosities and large pore aspect ratios. 

Three-dimensional distributions of these reservoir properties will be obtained when 
combined with surface seismic data, from which 3D distributions of VP and VS can be inverted. 
The procedures in this study could be applied to other gas shales other than the Haynesville 



Characterizing Reservoir Properties 

	   24	  

Shale in order to characterize their reservoir properties. Applications to other shales, however, 
must begin with determining the site-specific reservoir properties that most significantly affect 
the seismic properties as well as the associated uncertainty.  
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APPENDIX 
 

In Chapman’s Model, the following equations (Equation A1–A5) were used to calculate the 
five independent stiffness tensor components. These equations are the same as Equations (51), 
(52), (54), (59), and (61) in Chapman (2003).   
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In Equation A1-A5, λ is Lame’s constant, µ is shear modulus, ν is the Poisson’s ratio of the 

matrix material, r is the aspect ratio for cracks and fractures, σc and κ depend on λ and µ 
(Equation A6), ϕp is round pore porosity, ϕc is crack porosity, and ϕf is fracture porosity. The D1 
and D2 are terms to calculate pore pressure (Equation A7); G1, G2, and G3 are terms to calculate 
crack pressure (Equation A8); and F1 and F2 are terms to calculate fracture pressure (Equation 
A9). L2, L3, and L4 are calculated from λ and µ (Equation A10).   
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In Equation A7–A9, ω is frequency, and τm and τf are relaxation time terms for cracks and 

fractures that account for squirt flow, which depend on crack/fracture size, fluid viscosity, grains 
size, and matrix bulk and shear moduli. Equation A11 gives Kc. In addition, γ and γ’ are from 
Equation A12, where pv and cv are volumes of pores and cracks, Kf is bulk modulus of fluid, ι 
and β are from Equation A13, where ε and εf are crack density and fracture density. 
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The stiffness tensors Cij’s calculated from Equation A1–A5 are complex numbers. The real 

parts provide frequency-dependent velocities, and imaginary parts give frequency-dependent 
attenuations. 
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